
Dr. A. Taghinezhad18.1Database System Concepts - 7th Edition

Advance Database

-Lecture 3

Mail:

a0taghinezhad@gmail.com

Website:

ataghinezhad.github.io

By Dr. Taghinezhad

mailto:a0taghinezhad@gmail.com
https://ataghinezhad.github.io/

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 18 : Concurrency Control

http://www.db-book.com/

Dr. A. Taghinezhad18.3Database System Concepts - 7th Edition

Outline

▪ Lock-Based Protocols

▪ Timestamp-Based Protocols

▪ Validation-Based Protocols

▪ Multiple Granularity

▪ Multiversion Schemes

▪ Insert and Delete Operations

▪ Concurrency in Index Structures

Dr. A. Taghinezhad18.4Database System Concepts - 7th Edition

Lock-Based Protocols

▪ A lock is a mechanism to control concurrent access to a

data item

▪ Data items can be locked in two modes :

1. exclusive (X) mode. Data item can be both read as well

as written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is

requested using lock-S instruction.

▪ Lock requests are made to concurrency-control manager.

Transaction can proceed only after request is granted.

Dr. A. Taghinezhad18.5Database System Concepts - 7th Edition

Lock-Based Protocols (Cont.)

▪ Lock-compatibility matrix

▪ A transaction may be granted a lock on an item if the

requested lock is compatible with locks already held

on the item by other transactions

▪ Any number of transactions can hold shared locks on

an item,

▪ But if any transaction holds an exclusive on the item

no other transaction may hold any lock on the item.

Dr. A. Taghinezhad18.6Database System Concepts - 7th Edition

Lock-Based Protocols (Cont.)

▪ Example of a transaction performing locking:

T2: lock-S(A);

read (A);

unlock(A);

lock-S(B);

read (B);

unlock(B);

display(A+B)

▪ Locking as above is not sufficient to guarantee

serializability

Dr. A. Taghinezhad18.7Database System Concepts - 7th Edition

• Suppose that the values of accounts A and B are $100 and $200,. If

these two transactions are executed serially, order T1, T2 or the

order T2, T1,

• Then transaction T2 will display the value $300.

Dr. A. Taghinezhad18.8Database System Concepts - 7th Edition

Schedule With Lock Grants

▪ Grants omitted in rest of

chapter

• Assume grant happens

just before the next

instruction following lock

request

▪ This schedule is not

serializable (why?)

▪ A locking protocol is a set

of rules followed by all

transactions while requesting

and releasing locks.

▪ Locking protocols enforce

serializability by restricting the

set of possible schedules.

Dr. A. Taghinezhad18.9Database System Concepts - 7th Edition

Schedule With Lock Grants

▪ Same schedule but delayed

unlocks:

Dr. A. Taghinezhad18.10Database System Concepts - 7th Edition

Deadlock

▪ Consider the partial schedule

▪ Neither T3 nor T4 can make progress — executing
lock-S(B) causes T4 to wait for T3 to release its lock on
B, while executing lock-X(A) causes T3 to wait for T4 to
release its lock on A.

▪ Such a situation is called a deadlock.

• To handle a deadlock one of T3 or T4 must be rolled
back
and its locks released.

Dr. A. Taghinezhad18.11Database System Concepts - 7th Edition

Deadlock (Cont.)

▪ The potential for deadlock exists in most locking

protocols. Deadlocks are a necessary evil.

▪ Starvation is also possible if concurrency control

manager is badly designed. For example:

• A transaction may be waiting for an X-lock on an

item, while a sequence of other transactions

request and are granted an S-lock on the same

item.

• The same transaction is repeatedly rolled back

due to deadlocks.

▪ Concurrency control manager can be designed to

prevent starvation.

Dr. A. Taghinezhad18.12Database System Concepts - 7th Edition

The Two-Phase Locking Protocol

▪ A protocol which ensures conflict-

serializable schedules.

▪ Phase 1: Growing Phase

• Transaction may obtain locks

• Transaction may not release locks

▪ Phase 2: Shrinking Phase

• Transaction may release locks

• Transaction may not obtain locks

▪ The protocol assures serializability. It

can be proved that the transactions can

be serialized in the order of their lock

points (i.e., the point where a transaction

acquired its final lock).

Time

L
o
c
k
s

Dr. A. Taghinezhad18.13Database System Concepts - 7th Edition

Cascading rollback may occur under two-phase locking.

▪ Each transaction observes the two-phase locking protocol,

but the failure of T5 after the read(A) step of T7 leads to

cascading rollback of T6 and T7

Dr. A. Taghinezhad18.14Database System Concepts - 7th Edition

The Two-Phase Locking Protocol (Cont.)

▪ Two-phase locking does not ensure freedom from deadlocks

▪ Extensions to basic two-phase locking needed to ensure

recoverability of freedom from cascading roll-back

• Strict two-phase locking: a transaction must hold all its

exclusive locks till it commits/aborts.

▪ Ensures recoverability and avoids cascading roll-backs

• Rigorous two-phase locking: a transaction must hold all locks

till commit/abort.

▪ Transactions can be serialized in the order in which they

commit.

▪ Most databases implement rigorous two-phase locking, but refer to

it as simply two-phase locking

Dr. A. Taghinezhad18.15Database System Concepts - 7th Edition

The Two-Phase Locking Protocol (Cont.)

▪ Two-phase locking is not a necessary condition for

serializability

• There are conflict serializable schedules that cannot

be obtained if the two-phase locking protocol is used.

▪ In the absence of extra information (e.g., ordering of

access to data), two-phase locking is necessary for

conflict serializability in the following sense:

• Given a transaction Ti that does not follow two-

phase locking, we can find a transaction Tj that uses

two-phase locking, and a schedule for Ti and Tj that is

not conflict serializable.

Dr. A. Taghinezhad18.16Database System Concepts - 7th Edition

Locking Protocols

▪ Given a locking protocol (such as 2PL)

• A schedule S is legal under a locking protocol if it

can be generated by a set of transactions that

follow the protocol

• A protocol ensures serializability if all legal

schedules under that protocol are serializable

Dr. A. Taghinezhad18.17Database System Concepts - 7th Edition

Lock Conversions

▪ Two-phase locking protocol with lock conversions:

– Growing Phase:

▪ can acquire a lock-S on item

▪ can acquire a lock-X on item

▪ can convert a lock-S to a lock-X (upgrade)

– Shrinking Phase:

▪ can release a lock-S

▪ can release a lock-X

▪ can convert a lock-X to a lock-S (downgrade)

▪ This protocol ensures serializability

Dr. A. Taghinezhad18.18Database System Concepts - 7th Edition

Automatic Acquisition of Locks

▪ A transaction Ti issues the standard read/write instruction,

without explicit locking calls.

▪ The operation read(D) is processed as:

if Ti has a lock on D

then

read(D)

else begin

if necessary wait until no other

transaction has a lock-X on D

grant Ti a lock-S on D;

read(D)

end

Dr. A. Taghinezhad18.19Database System Concepts - 7th Edition

Automatic Acquisition of Locks (Cont.)

▪ The operation write(D) is processed as:

if Ti has a lock-X on D

then
write(D)

else begin

if necessary wait until no other trans. has any lock on D,

if Ti has a lock-S on D

then

upgrade lock on D to lock-X

else

grant Ti a lock-X on D

write(D)
end;

▪ All locks are released after commit or abort

Dr. A. Taghinezhad18.20Database System Concepts - 7th Edition

Implementation of Locking

▪ A lock manager can be implemented as a separate process

▪ Transactions can send lock and unlock requests as

messages

▪ The lock manager replies to a lock request by sending a

lock grant messages (or a message asking the

transaction to roll back, in case of a deadlock)

• The requesting transaction waits until its request is

answered

▪ The lock manager maintains an in-memory data-structure

called a lock table to record granted locks and pending

requests

Dr. A. Taghinezhad18.21Database System Concepts - 7th Edition

Lock Table
▪ Dark rectangles indicate granted locks,

light colored ones indicate waiting

requests

▪ Lock table also records the type of lock

granted or requested

▪ New request is added to the end of the

queue of requests for the data item, and

granted if it is compatible with all earlier

locks

▪ Unlock requests result in the request

being deleted, and later requests are

checked to see if they can now be granted

▪ If transaction aborts, all waiting or

granted requests of the transaction are

deleted

• lock manager may keep a list of locks

held by each transaction, to implement

this efficiently

Dr. A. Taghinezhad18.22Database System Concepts - 7th Edition

Graph-Based Protocols

▪ Graph-based protocols are an alternative to two-

phase locking

▪ Impose a partial ordering → on the set D = {d1, d2

,..., dh} of all data items.

• If di → dj then any transaction accessing both di

and dj must access di before accessing dj.

• Implies that the set D may now be viewed as a

directed acyclic graph, called a database graph.

▪ The tree-protocol is a simple kind of graph protocol.

Dr. A. Taghinezhad18.23Database System Concepts - 7th Edition

Tree Protocol

▪ In the tree protocol, the only lock instruction allowed is

exclusive locks (lock-X).

▪ Each transaction 𝑻𝒊 can lock a data item at most once,

and must observe the following rules:

1. The first lock by 𝑇𝑖 may be on any data item.

Subsequently, a data Q can be locked by 𝑻𝒊 only if the

parent of Q is currently locked by 𝑻𝒊.

2. Data items may be unlocked at any time.

3. A data item that has been locked and unlocked by Ti

cannot subsequently be relocked by Ti

Dr. A. Taghinezhad18.24Database System Concepts - 7th Edition

Tree Protocol

Dr. A. Taghinezhad18.25Database System Concepts - 7th Edition

Tree Protocol

• One possible schedule in

which these four

transactions participated

appears in Figure

• During its execution,

transaction T10 holds locks

on two disjoint subtrees.

Observe that the schedule

of Figure is conflict

serializable.

• It can be shown not only

that the tree protocol

ensures conflict

serializability, but also that

this protocol ensures

freedom from deadlock

Dr. A. Taghinezhad18.26Database System Concepts - 7th Edition

Graph-Based Protocols (Cont.)

▪ The tree protocol ensures conflict serializability
as well as freedom from deadlock.

▪ Unlocking may occur earlier in the tree-locking
protocol than in the two-phase locking protocol.

• Shorter waiting times, and increase in
concurrency

• Protocol is deadlock-free, no rollbacks are
required

Dr. A. Taghinezhad18.27Database System Concepts - 7th Edition

Graph-Based Protocols (Cont.)

▪ Drawbacks

• Protocol does not guarantee recoverability or
cascade freedom

▪Need to introduce commit dependencies to
ensure recoverability

• Transactions may have to lock data items that
they do not access.

▪ increased locking overhead, and additional
waiting time

▪ potential decrease in concurrency

▪ Schedules not possible under two-phase locking
are possible under the tree protocol, and vice
versa.

Dr. A. Taghinezhad18.28Database System Concepts - 7th Edition

Graph-Based Protocols (Cont.)

▪ Drawback:

• a transaction that needs to access data items A and J in
the database graph of must lock not only A and J, but also
data items B, D, H

Dr. A. Taghinezhad18.29Database System Concepts - 7th Edition

Deadlock Handling

▪ System is deadlocked if there is a set of transactions such that

every transaction in the set is waiting for another transaction in

the set.

Dr. A. Taghinezhad18.30Database System Concepts - 7th Edition

Deadlock Handling

▪ Deadlock prevention protocols ensure that the

system will never enter into a deadlock state.

Some prevention strategies:

• Require that each transaction locks all its data

items before it begins execution (pre-

declaration).

• Impose partial ordering of all data items and

require that a transaction can lock data items

only in the order specified by the partial order

(graph-based protocol).

Dr. A. Taghinezhad18.31Database System Concepts - 7th Edition

More Deadlock Prevention Strategies

▪ wait-die scheme — non-preemptive

• Older transaction may wait for younger one to

release data item.

• Younger transactions never wait for older ones;

they are rolled back instead.

• A transaction may die several times before

acquiring a lock

Dr. A. Taghinezhad18.32Database System Concepts - 7th Edition

wait-die scheme, Example

▪ suppose that transactions T14, T15, and

T16 have timestamps 5, 10, and 15,

respectively.

▪ If T14 requests a data item held by T15,

then what will happen?

▪ If T16 requests a data item held by T15,

then what will happen?

Dr. A. Taghinezhad18.33Database System Concepts - 7th Edition

More Deadlock Prevention Strategies

▪ wound-wait scheme — preemptive

• Older transaction wounds (forces rollback) of

younger transaction instead of waiting for it.

• Younger transactions may wait for older ones.

• Fewer rollbacks than wait-die scheme.

▪ In both schemes, a rolled back transactions is

restarted with its original timestamp.

• Ensures that older transactions have precedence

over newer ones, and starvation is thus avoided.

Dr. A. Taghinezhad18.34Database System Concepts - 7th Edition

Wound-die scheme, Example

▪ suppose that transactions T14, T15, and

T16 have timestamps 5, 10, and 15,

respectively.

▪ if T14 requests a data item held by T15,

then what happens?

▪ If T16 requests a data item held by T15,

then what happens?

Dr. A. Taghinezhad18.35Database System Concepts - 7th Edition

Deadlock prevention (Cont.)

▪ Timeout-Based Schemes:

• A transaction waits for a lock only for a specified amount

of time. After that, the wait times out and the transaction

is rolled back.

• Ensures that deadlocks get resolved by timeout if they

occur

• Simple to implement

• But may roll back transaction unnecessarily in absence of

deadlock

▪ Difficult to determine good value of the timeout

interval.

• Starvation is also possible

Dr. A. Taghinezhad18.36Database System Concepts - 7th Edition

Deadlock Detection

▪ Wait-for graph

• Vertices: transactions

• Edge from Ti →Tj. : if Ti is waiting for a lock held in conflicting mode

by Tj

▪ The system is in a deadlock state if and only if the wait-for graph has a

cycle.

▪ Invoke a deadlock-detection algorithm periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle

in the systems that do not prevent deadlock

Dr. A. Taghinezhad18.37Database System Concepts - 7th Edition

Deadlock Recovery

▪ When deadlock is detected :

• Some transaction will have to rolled back (made a victim) to

break deadlock cycle.

▪ Select that transaction as victim that will incur minimum

cost

• Rollback -- determine how far to roll back transaction

▪ Total rollback: Abort the transaction and then restart it.

▪ Partial rollback: Rollback victim transaction only as far as

necessary to release locks that another transaction in cycle

is waiting for

▪ Starvation can happen (why?)

• One solution: oldest transaction in the deadlock set is never

chosen as victim

Dr. A. Taghinezhad18.38Database System Concepts - 7th Edition

Multiple Granularity

▪ it would be advantageous to group several data items, and to treat

them as one individual synchronization unit.

▪ For example, if a transaction 𝑻𝒊 needs to access an entire relation,

and a locking protocol is used to lock tuples, then 𝑇𝑖 must lock

each tuple in the relation.

• acquiring many such locks is time-consuming; even worse,

the lock table may become very large and no longer fit in

memory.

• It would be better if 𝑻𝒊 could issue a single lock request to lock

the entire relation.

▪ if transaction 𝑇𝑖 needs to access only a few tuples, it should

not be required to lock the entire relation,

▪ a mechanism to allow the system to define multiple levels of

granularity is needed then

Dr. A. Taghinezhad18.39Database System Concepts - 7th Edition

Multiple Granularity

▪ Allow data items to be of various sizes and define a

hierarchy of data granularities, where the small granularities

are nested within larger ones

▪ Can be represented graphically as a tree (but do not confuse

with tree-locking protocol)

▪ When a transaction locks a node in the tree explicitly, it

implicitly locks all the node's descendants in the same mode.

▪ Granularity of locking (level in tree where locking is done):

• Fine granularity (lower in tree): high concurrency, high

locking overhead

• Coarse granularity (higher in tree): low locking overhead,

low concurrency

Dr. A. Taghinezhad18.40Database System Concepts - 7th Edition

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are

• database

• area

• file

• record

Dr. A. Taghinezhad18.41Database System Concepts - 7th Edition

Example of Granularity Hierarchy

▪ if transaction 𝑇𝑖 gets an explicit lock on file 𝐹𝑐 of Figure, in
exclusive mode, then it has an implicit lock in exclusive
mode on all the records belonging to that file.

Dr. A. Taghinezhad18.42Database System Concepts - 7th Edition

Example of Granularity Hierarchy

▪ how does the system determine if the root node can be locked?

• One possibility is for it to search the entire tree.

▪ This solution, is not suitable

• A more efficient way: a new class of lock modes, called
intention lock modes.

▪ If a node is locked in an intention mode, explicit locking is
done at a lower level of the tree (that is, at a finer
granularity)

▪ Intention locks are put on all the ancestors of a node
before that node is locked explicitly. So a transaction
does not need to search the entire tree to determine
whether it can lock a node successfully

Dr. A. Taghinezhad18.43Database System Concepts - 7th Edition

Intention Lock Modes

▪ In addition to S and X lock modes, there are three

additional lock modes with multiple granularity:

• intention-shared (IS): indicates explicit locking at a

lower level of the tree but only with shared locks.

• intention-exclusive (IX): indicates explicit locking at a

lower level with exclusive or shared locks

• shared and intention-exclusive (SIX): if a node is locked

in (SIX) mode, the subtree rooted by that node is locked

explicitly in shared mode and explicit locking is being

done at a lower level with exclusive-mode locks.

▪ Intention locks allow a higher level node to be locked in S

or X mode without having to check all descendent nodes.

Dr. A. Taghinezhad18.44Database System Concepts - 7th Edition

Compatibility Matrix with Intention Lock Modes

▪ The compatibility matrix for all lock modes is:

Dr. A. Taghinezhad18.45Database System Concepts - 7th Edition

Multiple Granularity Locking Scheme

▪ Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.

2. The root of the tree must be locked first, and may be locked in any

mode.

3. A node Q can be locked by Ti in S or IS mode only if the parent of Q is

currently locked by Ti in either IX or IS mode.

4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent
of Q is currently locked by Ti in either IX or SIX mode.

5. Ti can lock a node only if it has not previously unlocked any node (that
is, Ti is two-phase).

6. Ti can unlock a node Q only if none of the children of Q are currently

locked by Ti.

▪ Observe that locks are acquired in root-to-leaf order, whereas they are
released in leaf-to-root order.

▪ Lock granularity escalation: in case there are too many locks at a particular
level, switch to higher granularity S or X lock

Dr. A. Taghinezhad18.46Database System Concepts - 7th Edition

Multiple Granularity Locking Scheme

• Suppose that transaction T21 reads record 𝑟𝑎2 in file 𝐹𝑎 . Then, T21

needs to lock the database, area 𝐴1, and 𝐹𝑎 in IS mode (and in that

order), and finally to lock 𝑟𝑎2 in S mode.

• Suppose that transaction T22 modifies record 𝑟𝑎9 in file 𝐹𝑎. Then,

T22 needs to lock the database, area A1, and file 𝐹𝑎 (and in that

order) in IX mode, and finally to lock 𝑟𝑎9in X mode.

Dr. A. Taghinezhad18.47Database System Concepts - 7th Edition

Multiple Granularity Locking Scheme

• Suppose that transaction T23 reads all the records in file 𝐹𝑎.

Then, T23 needs to lock the database and area A1 (and in

that order) in IS mode, and finally to lock 𝐹𝑎in S mode.

• Suppose that transaction T24 reads the entire database. It

can do so after locking the database in S mode.

Dr. A. Taghinezhad18.48Database System Concepts - 7th Edition

Timestamp Based Concurrency

Control

Dr. A. Taghinezhad18.49Database System Concepts - 7th Edition

Timestamp Based Concurrency Control

▪ The locking protocols that we have described thus far

determine the order between every pair of conflicting

transactions at execution time by the first lock that both

members of the pair request that involves incompatible

modes.

▪ a timestamp-ordering scheme

• For determining the serializability order is to select

an ordering among transactions in advance.

• With each transaction 𝑇𝑖 in the system, we associate a

unique fixed timestamp, denoted by TS(𝑻𝒊). This

timestamp is assigned by the database system before

the transaction 𝑇𝑖 starts execution

Dr. A. Taghinezhad18.50Database System Concepts - 7th Edition

Timestamp-Based Protocols

▪ Each transaction Ti is issued a timestamp TS(Ti) when it

enters the system.

• Each transaction has a unique timestamp

• Newer transactions have timestamps strictly greater than

earlier ones TS(𝑇𝑖) < TS(𝑇𝑗)

▪ Timestamp could be based on a logical counter

▪ system clock as the timestamp;

• Timestamp-based protocols manage concurrent execution

such that

time-stamp order = serializability order.

▪ The system must ensure it is equivalent to a

serial Schedule

Dr. A. Taghinezhad18.51Database System Concepts - 7th Edition

Timestamp-Ordering Protocol

The timestamp ordering (TSO) protocol

▪ Maintains for each data Q two timestamp values:

• W-timestamp(Q) is the largest time-stamp of any

transaction that executed write(Q) successfully.

• R-timestamp(Q) is the largest time-stamp of any

transaction that executed read(Q) successfully.

▪ Imposes rules on read and write operations to ensure that

• Any conflicting operations are executed in timestamp

order

• Out of order operations cause transaction rollback

Dr. A. Taghinezhad18.52Database System Concepts - 7th Edition

Timestamp-Based Protocols (Cont.)

▪ Suppose a transaction Ti issues a read(Q)

1. If TS(Ti) < W-timestamp(Q), then Ti needs to read a

value of Q that

was already overwritten.

▪ Hence, the read operation is rejected, and Ti is rolled

back.

2. If TS(Ti)  W-timestamp(Q), then the read operation is

executed, and

R-timestamp(Q) is set to =max(R-timestamp(Q), TS(Ti)).

Dr. A. Taghinezhad18.53Database System Concepts - 7th Edition

Timestamp-Based Protocols (Cont.)

▪ Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing

was needed previously, and the system assumed that that value

would never be produced.

➢Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an

obsolete value of Q.

➢Hence, this write operation is rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q)

is

set to TS(Ti).

Dr. A. Taghinezhad18.54Database System Concepts - 7th Edition

Timestamp-Based Protocols (Cont.)

▪ If a transaction Ti is rolled back by the

concurrency-control scheme as result of issuance

of either a read or write operation, the system

assigns it a new timestamp and restarts it.

Dr. A. Taghinezhad18.55Database System Concepts - 7th Edition

Example of Schedule Under TSO

Assume that initially:

R-TS(A) = W-TS(A) = 0

R-TS(B) = W-TS(B) = 0

Assume TS(T25) = 25 and

TS(T26) = 26

▪ Is this schedule valid under TSO?

• We consider transactions T25 and T26.

Transaction T25 displays the contents of

accounts A + B

• Transaction T26 transfers $50 from account

B to account A, and then displays the

contents of both

Dr. A. Taghinezhad18.56Database System Concepts - 7th Edition

Example of Schedule Under TSO

▪ How about this one,

where initially

• R-TS(Q)=W-TS(Q)=0

• TS(T27) < TS(T28)

▪ Is this schedule valid under TSO?

➢ The read(Q) operation of T27 succeeds, as does the write(Q)

operation of T28.

➢ When T27 attempts its write(Q) operation:

➢ Because TS(T27) < W-timestamp(Q), since W-timestamp(Q) =

TS(T28). Thus, the write(Q) by T27 is rejected and transaction

T27 must be rolled back.

➢ Any transaction 𝑇𝑗 with TS(𝑇𝑗) > TS(T28) must read the value of Q

written by T28, rather than the value that T27 is attempting to write

Dr. A. Taghinezhad18.58Database System Concepts - 7th Edition

Correctness of Timestamp-Ordering Protocol

▪ The timestamp-ordering protocol guarantees

serializability since all the arcs in the precedence graph

are of the form:

Thus, there will be no cycles in the precedence graph

▪ Timestamp protocol ensures freedom from deadlock as no
transaction ever waits.

▪ But the schedule may not be cascade-free, and may not
even be recoverable.

Dr. A. Taghinezhad18.59Database System Concepts - 7th Edition

Recoverability and Cascade Freedom

▪ Solution 1:

• A transaction is structured such that its writes are all
performed at the end of its processing

• All writes of a transaction form an atomic action; no
transaction may execute while a transaction is being
written

• A transaction that aborts is restarted with a new
timestamp

▪ Solution 2:

• Limited form of locking: wait for data to be committed
before reading it

▪ Solution 3:

• Use commit dependencies to ensure recoverability

Dr. A. Taghinezhad18.60Database System Concepts - 7th Edition

Thomas’ Write Rule

▪ Modified version of the timestamp-ordering protocol in which

obsolete write operations may be ignored under certain

circumstances.

▪ When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q),

then Ti is attempting to write an obsolete value of {Q}.

• Rather than rolling back Ti as the timestamp ordering protocol

would have done, this {write} operation can be ignored.

▪ Otherwise this protocol is the same as the timestamp ordering

protocol.

▪ Thomas' Write Rule allows greater potential concurrency.

• Allows some view-serializable schedules that are not conflict-

serializable.

Dr. A. Taghinezhad18.61Database System Concepts - 7th Edition

Validation-Based Protocol

▪ Idea: can we use commit time as serialization order?

▪ To do so:

• Postpone writes to end of transaction

• Keep track of data items read/written by transaction

• Validation performed at commit time, detect any out-of-

serialization order reads/writes

▪ Also called as optimistic concurrency control since

transaction executes fully in the hope that all will go well

during validation

Dr. A. Taghinezhad18.62Database System Concepts - 7th Edition

Validation-Based Protocol

▪ Execution of transaction Ti is done in three phases.

1. Read and execution phase: Transaction Ti writes only to
temporary local variables

2. Validation phase: Transaction Ti performs a '‘validation test''

to determine if local variables can be written without violating
serializability.

3. Write phase: If Ti is validated, the updates are applied to the
database; otherwise, Ti is rolled back.

▪ The three phases of concurrently executing transactions can be

interleaved, but each transaction must go through the three phases

in that order.

• We assume for simplicity that the validation and write phase

occur together, atomically and serially

▪ I.e., only one transaction executes validation/write at a time.

Dr. A. Taghinezhad18.63Database System Concepts - 7th Edition

Validation-Based Protocol (Cont.)

▪ Each transaction Ti has 3 timestamps

• StartTS(Ti) : the time when Ti started its execution

• ValidationTS(Ti): the time when Ti entered its

validation phase

• FinishTS(Ti) : the time when Ti finished its write

phase

▪ Validation tests use above timestamps and read/write

sets to ensure that serializability order is determined by

validation time

• Thus, TS(Ti) = ValidationTS(Ti)

▪ Validation-based protocol has been found to give

greater degree of concurrency than locking/TSO if

probability of conflicts is low.

Dr. A. Taghinezhad18.64Database System Concepts - 7th Edition

Validation Test for Transaction Tj

▪ If for all Ti with TS (Ti) < TS (Tj) either one of the following condition

holds:

• finishTS(Ti) < startTS(Tj)

• startTS(Tj) < finishTS(Ti) < validationTS(Tj) and the set of data

items written by Ti does not intersect with the set of data items

read by Tj.

▪ then validation succeeds and Tj can be committed.

▪ Otherwise, validation fails and Tj is aborted.

▪ Justification:

• First condition applies when execution is not concurrent

▪ The writes of Tj do not affect reads of Ti since they occur after

Ti has finished its reads.

• If the second condition holds, execution is concurrent, Tj does not

read any item written by Ti.

Dr. A. Taghinezhad18.65Database System Concepts - 7th Edition

Schedule Produced by Validation

▪ Example of schedule produced using validation

➢ The validation phase succeeds in the schedule.

➢ Note that the writes to the actual variables are performed only after the validation

phase of T26. Thus, T25 reads the old values of B and A, and this schedule is

serializable.

Suppose that TS(T25) < TS(T26).

